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MOTIVATION

Profile soil moisture is an important variable for capturing diurnal and day-

to-day variations in hydrologic fluxes at the land surface.

Passive microwave remote sensing in the L-band (1.4 GHz) can provide

information about the physical temperature and the dielectric properties of

the land surface which are, in turn, related to soil moisture in the top few

centimeters.

In this paper we describe a four-dimensional data assimilation (4DDA)

algorithm which uses a physically-based model of soil moisture and

heat transport in order to extract information about soil moisture pro-

files and land-atmosphere fluxes from L-band microwave measure-

ments.



HYDROLOGIC MODEL & MEASUREMENT OPERATOR

State Equations

Soil moisture (Richards’ eq.)

∂tθ = ∇K(θ)∇ (ψ+ z) +model error

Soil temp. (Force-Restore)

∂tTg = c1G− c2(Tg − �T ) +model error

Parameterizations

Vegetation, soil, radiation

Micro-meteorologic Forcing (15min)

Measurement Equation

Brightness temp. (RT model)

TB =M(θ, Tg) +measurement error
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The coupled soil moisture and temperature model which forms the ba-

sis of the 4DDA algorithm is designed to capture the key physical pro-

cesses while remaining computationally efficient.

We account for model errors by treating the surface forcings and the initial

conditions in different pixels as random fields which are correlated over

time and space .

Vertical fluxes dominate

We neglect lateral unsaturated moisture and heat flow and divide the com-

putational region into 1-dim. vertical cells (or pixels).

Moisture transport in each pixel is described with Richards’ equation while

energy transport is described with a force-restore model.

The measurement operator corresponds to a non-coherent Radiative Trans-

fer (RT) model [Jackson et al., 1995].



ESTIMATION & OBSERVATION GRIDS
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D O W N S C A L I N G

The meteorologic and soil parameter inputs to the model are available at a

finer scale than the brightness measurements.

The measurement operator M of the 4DDA algorithm accounts for this

difference in scales as well as for the nonlinear relationship between soil

moisture, soil temperature, and brightness temperature.

This makes it possible to estimate soil moisture profiles at a finer scale

than the resolution of the brightness data.



DATA ASSIMILATION SYSTEM
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The data assimilation algorithm optimally combines the information from

the hydrological model with the information from the remote sensing data

and yields a best estimate of the true state of the system.

The estimates are derived from a variational least-squares algorithm .

Variational methods are particularly well-suited for assimilation applica-

tions which rely on highly nonlinear state equations, such as those used in

our model of soil moisture and temperature variability.

The approach is widely used in oceanographic research and in operational

weather forecasting [Bennett, 1992; Thépaut and Courtier, 1991].

Variational assimilation methods interpolate and extrapolate the data in a

dynamically consistent way.

Through its implicit propagation of the error covariances, the algorithm is

very efficient and thus able to provide optimal estimates without the sim-

plifications that are needed in large-scale Kalman filtering applications.



SYNTHETIC EXPERIMENT — SGP97



Our test problem is based on the SGP97 field experiment.
The algorithm is used to run a series of twin-experiments with synthetically
generated “true” parameter, model, and measurement errors.
Such experiments are best suited to evaluate the performance of the algo-
rithm as all of the uncertain inputs are known.

The assimilation is performed for a two-week period. Observations of
brightness temperatures are available once daily in the morning.

The prior is our best guess using the hydrologic model but without assim-
ilating the brightness data. The estimate contains both the information
from the model and from the brightness data.

The algorithm recovers the brightness temp. on the scale of the observa-
tions and on the finer scale of the (downscaled) soil moisture estimates.
For a representative pixel, we also compare the prior and the estimated
soil moisture profiles. The estimated profile is close to the truth.



BRIGHTNESS TEMPERATURE [K]
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PROFILE SATURATION — ESTIMATION SCALE (PIX 311)
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Two downscaling scenarios with brightness assimilation are shown:
In the 1:4 scenario, 5km× 5km estimates are obtained from 10km× 10km
brightness observations (each obs pix contains 4 est pix).
In the 1:16 scenario, 5km× 5km estimates are obtained from 20km× 20km
brightness observations (each obs pix contains 16 est pix).

In both cases, the top node saturation can be well recovered over the entire
domain at a scale finer than the observation scale.



New Project (NRA-98-OES-11)

Soil Moisture Data Assimilation for Continental-Scale

Land Surface Hydrology Applications

• Joint tasks between MIT and NASA-GSFC/DAO (Dr Paul Houser)

• Transition towards operational capability
• Identify forward models appropriate for continental scales
• Further improve computational efficiency of the algorithm
• Develop methods for assessing the accuracy of the estimates

• Generate SGP97 soil moisture and temperature estimates from re-
mote sensing and ground-based data
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